[1]
O'BRIEN D M. Analysis of computational modeling techniques for complete rotorcraft configurations (Order No. 3212277) [D].Georgia Institute of Technology, 2006. https://www.proquest.com
[2]
IKAMI T, FUJITA K, NAGAI H. Unsteady flow field on wing surface in propeller slipstream at low Reynolds number[C]// AIAA Aviation 2022 Forum, Chicago, IL & Virtual. AIAA, 2022: AIAA 2022-3983. doi: 10.2514/6.2022-3983
[3]
XUE C, ZHOU Z. Propeller-wing coupled aerodynamic design based on desired propeller slipstream[J]. Aerospace Science and Technology, 2020, 97: 105556. doi: 10.1016/j.ast.2019.105556
[4]
BOUSQUET J M, GARDAREIN P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aerospace Science and Technology, 2003, 7(6): 465−472. doi: 10.1016/S1270-9638(03)00046-4
[5]
ROOSENBOOM E W M, STÜRMER A, SCHRÖDER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1): 284−291. doi: 10.2514/1.45961
[6]
龚晓亮, 杨永, 夏贞锋. 螺旋桨滑流与机翼气动干扰数值模拟研究[J]. 航空计算技术, 2012, 42(1): 76−79. doi: 10.3969/j.issn.1671-654X.2012.01.021
GONG X L, YANG Y, XIA Z F. Unsteady simulation method and actuator disk theory in numerical simulations of propeller's interference on wing[J]. Aeronautical Computing Technique, 2012, 42(1): 76−79 (in Chinese). doi: 10.3969/j.issn.1671-654X.2012.01.021
[7]
夏贞锋, 罗淞, 杨永. 基于激励盘理论的螺旋桨滑流数值模拟研究[J]. 空气动力学学报, 2012, 30(2): 219−222,232. doi: 10.3969/j.issn.0258-1825.2012.02.015
XIA Z F, LUO S, YANG Y. Numerical simulations of propeller slipstream flows using actuator disk theory[J]. Acta Aerodynamica Sinica, 2012, 30(2): 219−222,232 (in Chinese). doi: 10.3969/j.issn.0258-1825.2012.02.015
[8]
RAICHLE A, MELBER-WILKENDING S, HIMISCH J. A new actuator disk model for the TAU code and application to a sailplaine with a folding engine[M]//New Results in Numerical and Experimental Fluid Mechanics Ⅵ. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 52−61. doi: 10.1007/978-3-540-74460-3_7
[9]
VELDHUIS L L M. Review of propeller-wing aerodynamic interference [C]//24th International Congress of the Aeronautical Sciences, Yokohama, Japan. Beijing: Chinese Society of Aeronautics and Astronautics, 2004.
[10]
SAMANT S S, YU N J. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds: NASA CR-3954 [R]. California, USA: National aeronautics and space administration, 1986.
[11]
MOENS F, GARDAREIN P. Numerical simulation of the propeller/wing interaction for transport aircraft: AIAA-2001-2404 [R]. Anaheim, CA, USA: American Institute of Aeronautics and Astronautics, 2001.
[12]
ZACHARIADIS A, HALL C A. Application of a navier–stokes solver to the study of open rotor aerodynamics[J]. Journal of Turbomachinery, 2011, 133(3): 031025. doi: 10.1115/1.4001246
[13]
CUSATI V, CORCIONE S, NICOLOSI F, et al. Improvement of take-off performance for an electric commuter aircraft due to distributed electric propulsion[J]. Aerospace, 2023, 10(3): 276. doi: 10.3390/aerospace10030276
[14]
李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4): 845−852. doi: 10.3321/j.issn:1000-6893.2008.04.013
LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 845−852 (in Chinese). doi: 10.3321/j.issn:1000-6893.2008.04.013
[15]
LE CHUITON F. Actuator disc modelling for helicopter rotors[J]. Aerospace Science and Technology, 2004, 8(4): 285−297. doi: 10.1016/j.ast.2003.10.004
[16]
KHIER W. Time-accurate versus actuator disk simulations of complete helicopters[M]//High Performance Computing in Science and Engineering' 05. Berlin/Heidelberg: Springer-Verlag, 2006: 209−220. doi:10.1007/3-540-29064-8_16
[17]
STRASH D, LEDNICER D, RUBIN T. Analysis of propeller-induced aerodynamic effects[C]// 16th AIAA Applied Aerodynamics Conference, Albuquerque, NM, USA. AIAA, 1998: AIAA 1998-2414. doi:10.2514/6.1998-2414
[18]
AMATO M, BOYLE F, EATON J A, et al. Euler/Navier stokes simulation for propulsion-airframe integration of advanced propeller driven aircraft in the European research programs GEMINI/APIAN [C] // 21st Congress of International Council of the Aeronautical Sciences, Melbourne, Australia, 1998.
[19]
WALES C, JONES D, GAITONDE A, et al. Comparison of aircraft loads using URANS and actuator disk modelling of propellers[C]// AIAA Aviation 2022 Forum, Chicago, IL & Virtual. AIAA, 2022: AIAA 2022-3684. doi: 10.2514/6.2022-3684
[20]
WALES C, JONES D, GAITONDE A. Comparison of aircraft loads using URANS and actuator disk modelling of propellers at high incidence[C]// AIAA AVIATION 2023 San Diego, CA and Online. AIAA, 2023: AIAA 2023-3670. doi: 10.2514/6.2023-3670
[21]
RONCH A D, VALLESPIN D, GHOREYSHI M. Evaluation of dynamic derivatives using computational fluid dynamics[J]. AIAA Journal, 2012, 50: 470−484. doi: 10.2514/1.J051304
[22]
ANDERSON J D. Computational fluid dynamics: The basic with applications [M]. New York: McGraw–Hill Higher Education, 1995: 49−74.
[23]
王维, 杨永, 夏贞锋. 不同螺旋桨滑流数值模拟方法对比研究[J]. 航空计算技术, 2012, 42(5): 80−83,86. doi: 10.3969/j.issn.1671-654X.2012.05.020
WANG W, YANG Y, XIA Z F. Study on comparison of different numerical simulation methods concerning propeller slipstream[J]. Aeronautical Computing Technique, 2012, 42(5): 80−83,86 (in Chinese). doi: 10.3969/j.issn.1671-654X.2012.05.020